
IOIX Ukraine, 2014-2015

1

Distributed Crawler Application

General architecture specification, phase A

The DC application is multithreaded server class software. Inter process interactions uses ZMQ TCP

sockets connections server and client type. In process interactions uses ZMQ inproc sockets connections

servers and clients. Asynchronous inproc resources access as well as requests processing provided by

MOM-based transport provided by ZMQ sockets technology. No system or POSIX access controlling

objects like mutexes or semaphores used. The only one kind of processing item is message. The several

messages containers types like queues, dictionaries, lists and so on can be used to accumulate and

organize processing sequences. The key-value DB engine is SQLite.

There are two listened by DTM application TCP ports:

1. Administration.

2. Client.

Administration – handles requests from tool client applications. Requests of that type fetches statistical

information from all threading objects as well as can be used to tune some configurations settings of

DTM application directly at runtime period.

Client – handles requests from client side API or tool application. Requests of that type are main

functional queries for tasks and related with HCE DRCE interaction protocol.

All requests are represented by json format of message. The structure of requests and main tasks logic

principles are separated from concrete execution environment. This gives potential possibility to use

some several execution environments engines, but not only HCE DRCE cluster.

Object model
All active networking usage objects (blue primitives on architecture UML diagram) are based on

threaded class object. Also, all threaded objects uses list of transport level items of two types: client and

server. Both are based on ZMQ sockets, server type can be TCP or inproc. TCP used for external

connections, inproc – for all internal inter-threading events interactions

IOIX Ukraine, 2018

2

Application architecture model

IOIX Ukraine, 2018

3

Operations

Operations are supported inside the service as isolated actions and available via client interface. There are different objects like Site, URL and

Batch can be involved in to the algorithm of operation execution as well as it can to have more deep and long results than immediately returned

in response.

IOIX Ukraine, 2018

4

The regular crawling

The regular crawling is periodic process that creates the Batch object by requesting the lists of URLs object from the SiteManager. The list of

URLs is unique and only not present in another active batch tasks are accepted. The Batch objects sending in to the DTM service as tasks and

managed by the tasks queue. After finish of task execution URLs from the Batch are updated in state CRAWLED(4) at all data hosts. Before task

execution all URLs from the Batch are send to insert as new with state SELECTED_TO_CRAWL(2) to all data hosts – the URLs propagation

method. The DTM service set the Batch task on n-type cluster and its router uses resource usage balancing mode to choose proper data host to

execute. This way URLs crawled only on one data host from several, but collected on all with state CRAWLED(4) to prevent farther redundant

crawling and processing.

IOIX Ukraine, 2018

5

The processing

The processing is periodic process that creates the URLFetch object and sets it as DTM task to execute. The execution has three steps: 1)

execution of the URLFetch operation, 2) convert the URLs list to the Batch object and 3) execution of the processing operation. The result of the

processing depends on the processing method or algorithm, typically it is a scraping. The processed resulted content are stored depends on the

method, for the scraping it is a local storage. The URLs objects inside a DC service that are processed changed status to PROCESSED(7).

IOIX Ukraine, 2018

6

IOIX Ukraine, 2018

7

Site cleanup

The Site object cleanup operation performs completely deletes all related URLs objects and contents and free space. Can be performed with

delete of root URLs and without. If uses delete method that inherited from default.

IOIX Ukraine, 2018

8

IOIX Ukraine, 2018

9

Site delete

Site delete removes the Site representation from the service storages and completely cleans all related structures, delete all accumulated data

and lists of items like URLs or documents.

IOIX Ukraine, 2018

10

IOIX Ukraine, 2018

11

Site find

Site find performs search action with defined criterions or URL pattern. If URL pattern used – root URLs of all sites in the service compared. In

results list of the Site objects returned or empty list if no one site matched.

IOIX Ukraine, 2018

12

IOIX Ukraine, 2018

13

Site new

Creates new Site object representation inside the service and initializes all related structures and lists of related objects. Site can to start to take

a part in the regular crawling or another periodic processes depends on initial values of its firlds.

IOIX Ukraine, 2018

14

IOIX Ukraine, 2018

15

Site status

This operation performs simple check of presence of the Site object in the system by the site Id and returns it. If site not present – error code

and error message set. Operation can be used to get the Site object fast way without involving the search process.

IOIX Ukraine, 2018

16

IOIX Ukraine, 2018

17

Site update

This operation updates the Site object representation inside the service and/or related data structures. For multi-item structures like lists of

objects like root URLs, filters or templates three different actions possible – append, overwrite and update. Note that operation is complex and

can be done partially in case of some database or another kind errors.

IOIX Ukraine, 2018

18

IOIX Ukraine, 2018

19

URL cleanup

IOIX Ukraine, 2018

20

URL content

IOIX Ukraine, 2018

21

URL delete

IOIX Ukraine, 2018

22

URL fetch

IOIX Ukraine, 2018

23

URL new

IOIX Ukraine, 2018

24

URL status

IOIX Ukraine, 2018

25

URL update

IOIX Ukraine, 2018

26

URL purge

IOIX Ukraine, 2018

27

URL age

IOIX Ukraine, 2018

28

SQL Custom

IOIX Ukraine, 2018

29

 Attribute set

IOIX Ukraine, 2018

30

Attribute update

IOIX Ukraine, 2018

31

Attribute delete

IOIX Ukraine, 2018

32

Attribute fetch

IOIX Ukraine, 2018

33

Thread classes

AdminInterfaceServer, ClientInterfaceService, BatchTasksManager and SitesManager.

Site

The structural unit that represents crawling item from user side. Has properties applied for each URL

fetched from page of this site.

Resource

The structural unit that represents results of HTTP request downloaded from site by URL. Mainly it is

http resource like html page, image or any kind of MIME type content.

URL

The structural unit that represents the resource URL for the site. Used as base of main resource

identifier for md5 checksum calculation.

HTTP Request

The object that used to do HTTP querying and resources downloading algorithms and operations on

data nodes.

HTTP Response

The object that used to represent and to parse downloaded resources on data nodes.

Client interface service

This class accepts the client requests events from TCP connection and sends them to the proper target

threading class. This class works mostly as a proxy between the target functional threaded class and

clients. It connects to three target threaded classes as shown on application architecture schema.

Batch Tasks Manager

It is a main class that implements algorithms of continues crawling processing iteration, interacts with

DTM application service, sets crawling tasks to execute and checks state of that tasks periodically. To

start the crawling task it collects some URLs from SitesManager and creates the crawling task Batch. The

crawling task batch send as main data set and input data of the main crawling application that works on

target data node in the HCE DRCE Cluster.

IOIX Ukraine, 2018

34

The Crawler application
The application that acts as web-crawler, uses crawling batch as a main job order, executes HTTP

requests and stores resources in the local file system cache, updates state of resources in the local SQL

DB. Located and acts on data node.

This is main crawling business logic and algorithms application. Steps of run processing:

1. Gets the Batch serialized object from stdin.
2. For each BatchItem from Batch.urls list (md5 string URL identifier) – gets URL record from

MySQL db table:

 If BatchItem.siteId==”” the table is `dc_urls`.`urls_0`.

 If BatchItem.siteId!=”” then table is “`dc_urls`.`urls_`” + BatchItem.siteId.

If record not found then insert new URL record in to the correspondent table with values from the
batchItem.urlObj field contains the URL object filled from the db located on the source host by
URL_FETCH operation.

Farther, the table that contains correspondent record will be named just “urls”, but depends on site
type (general or not) it must be treated as `dc_urls`.`urls_0` or as `dc_urls`.`urls_%SITE_ID_MD5%`
where is the “%SITE_ID_MD5%” it is a macro name that need to be replaced with value detected in
some way.

2a. Reset `urls`.`ErrorMask` to accumulate only newly error bits for current url.

3. From `dc_sites`.`sites` read correspondent record. If BatchItem.siteId==”” siteId=”0”.
4. If SITE.State is not “Active” then skip this BatchItem and process next.
5. If SITE.Errors> SITE.MaxErrors or SITE.Resources>SITE.MaxResources then accumulate(add to

existing bits) corresponding bit of SITE.ErrorMask, increment SITE.Errors, set TcDate=NOW(), set
SITE.State=”Suspended” and update all this fields of this site in correspondent site’s table
detected above. Then process next BatchItem.

6. Get site property “HTTP_HEADERS” from `dc_sites`.`sites_properties` for this site. If empty or no
records – then use default headers from correspondent crawler-task_headers.txt file from
config ini file.

7. Get site property “HTTP_COOKIE” from `dc_sites`.`sites_properties` for this site. If empty or no
records – act the same way as above, file name crawler-task_cookie.txt.

8. Prepare HTTP request using URL.URL, headers and cookie.
9. Update urls.Status=”Crawling”, urls.Crawled++, urls.Batch_Id for correspondent url’s record in

MySQL db.
10. Wait URL.RequestDelay, msec.
11. Using prepared HTTP headers make HTTP request and get robots.txt content. If content found

and not empty – parse them and store the set of rules in temporary container (list or map) for
this batch URLs set. When the batch processing finished – this set of rules need to be removed.
Check URL in robots.txt rules and if not succeeds – then set urls.State=”Error”, corresponding bit
in ErrorMask fields for sites(add to existing bits) and urls(set only current error bits) tables,
urls.Status=”Crawled”, and another related Site’s and URL’s fields like urls.UDate and process
next BatchItem.

12. Using prepared request – make HTTP request and wait on response urls.HTTPTimeout msec.

IOIX Ukraine, 2018

35

13. If response got – detect: HTTP response code, Charset, MIME Content-Type, and so on
downloaded resource’s properties and HTTP response fields. If timeout reached – set the
corresponding ErrorMask bit for urls.ErrorMask field, and other fields the same way as in case of
robots.txt rule not matched case.

14. Update fields of this URL record urls.Status=”Crawled”, urls.State=”Error” (if some error),
urls.ContentType, urls.Charset, urls.ErrorMask, urls.TotalTime, urls.CrawlingTime,
urls.UDate=NOW(),urls.HTTPCode to proper value.

15. If some other error like zero response, wrong response, HTTP error, content size greater
thanMaxResourceSize and so on – set corresponding ErrorMask bit, update urls record.

16. If any kind error trapped that lead to zero content size – remove item from the Batch.items and
process next item.

17. Check files directory and create if not found if BatchItem.siteId!=””:

 CONFIG_DATA_DIR/SITE_ID_MD5/PathMaker(RESOURCE_ID_MD5).getDir()/

and if BatchItem.siteId==””:

 CONFIG_DATA_DIR/0/PathMaker(RESOURCE_ID_MD5).getDir()/
18. Write HTML content file (if MIME Content-Type requires – converted to utf-8):

 RESOURCE_ID_MD5_ASCIITIME.bin
19. Write HTTP response header file:

 RESOURCE_ID_MD5_ASCIITIME.headers.txt
20. Write HTTP request file:

 RESOURCE_ID_MD5_ASCIITIME.request.txt
21. Collect URLs from HTML “A”, “IMG”, “IFRAME”, “FRAME” and so on, complete list see here

“http://stackoverflow.com/questions/2725156/complete-list-of-html-tag-attributes-which-
have-a-url-value/” and canonize them to have only fully qualified URLs uses “HTTP” protocol
only (later another protocols support will be added).

22. For each collected URL check if already exists by URLMD5 field and if not – insert record to the
urls table detected on step 2) (general or corresponds to this site), set fields with proper values
of Site_Id, URL and so on. The Type, RequestDelay, HTTPTimeout set from correspondent Site
fields. Fields that not defined leave default value. The URL candidate to insert need to be
verified as belonged to this site by usage `dc_sites`.`site_filters` table records by `Site_Id`. The
record has `Pattern` field defines the regexp pattern to check and the `Type` field defines check
result treat as exclude this URL from farther processing (0) or include (1). The URL candidate to
insert in to the database need to be checked by all filters for this site and in case of satisfy (no
one pattern will exclude it) need to be inserted. If some check is not success – the URL skipped
and not inserted in to the database for farther processing.

23. Serialize the resulted Batch object (possible, some items were removed) and print serialized
string content to the stdout. Finish with zero exit status value in case of no critical errors and
with 1 in another case. The error that can be treated as critical related with some DB structure,
file I/O operations like permissions, wrong input object and so on…

Site.ErrorMask and URLs.ErrorMask specification

Bit # Description

Crawling errors

IOIX Ukraine, 2018

36

0 Wrong URL

1 Timeout

2 HTTP error

3 Empty content

4 Wrong MIME type

5 Connection error

6 Code page convert error

7 Bad redirection

8 Size error

9 Authorization error

10 File operation error, write file, create directory and so on

11 Robots.txt rule not matched.

12 HTML_PARSE_ERROR

13 BAD_ENCODING

14 SITE_MAX_ERRORS

15 SITE_MAX_RESOURCES

16 RAW_CONTENT_NOT_STORED

17 MAX_ALLOW_HTTP_REDIRECTS

18 MAX_ALLOW_HTML_REDIRECTS

Processing errors

32 MaxErrors limit reached

33 MaxResources limit reached

34 Unsupported content-type for processing

35 Error raw content decoding

36 Scraper processing error

22

23

IOIX Ukraine, 2018

37

24

25

26

27

28

29

30

IOIX Ukraine, 2018

38

Processor-task application

This application represents sets of data processing algorithms that can be used to process locally stored
data. Located and acts on data node. This is main an after crawling data processor business logic and
algorithms application. Steps of run processing:

1. Gets the Batch serialized object from stdin.
2. For each BatchItem from Batch.urls list (md5 string URL identifier) – gets URL record from table:

 If BatchItem.siteId==”” the table is `dc_urls`.`urls_0`. Site Id=”0”.

 If BatchItem.siteId!=”” then table is “`dc_urls`.`urls_`” + BatchItem.siteId.
3. From `dc_sites`.`sites` read correspondent record. If BatchItem.siteId==”” Site Id=”0”.
4. If SITE.State is not “Active” then skip this BatchItem and process next.
5. If SITE.Errors> SITE.MaxErrors or SITE.Resources>SITE.MaxResources then set corresponding bit

of SITE.ErrorMask, increment SITE.Errors, set TcDate=NOW(), set SITE.State=”Suspended” and
update all this fields of this site. Then process next BatchItem.

6. Form `dc_urls`.`urls_SITE_ID_MD5` table read corresponded record by the `URLMd5` field value.
7. From `dc_sites`.`sites_properties` read all records belongs this site by the `Site_Id` field. For all

records with field `Name`=”PROCESS_CTYPES” check is value of field
`dc_urls`.`urls_SITE_ID_MD5`.`ContentType` the same as one of
`dc_sites`.`sites_properties`.`Value`. If not, skip this URL, set correspondent `ErrorMask` as
“Unsupported content-type for processing”, update URL record and go to process next item
from the batch.

8. Update URL.Status=”Processing”, URL.Processed++ for correspondent record.
9. Call processing algorithms methods and create resulted object.
10. Serialize resulted object to the json format.
11. If BatchItem.siteId!=”” – connect to the site file db using path:

 CONFIG_DB_DIR/SITE_ID_MD5.db
If BatchItem.siteId==”” – connect to the site file db using path:

 CONFIG_DB_DIR/0.db
12. Insert or update the record, key is URL_MD5_ID, value is json string, CDate is NOW().
13. Update fields of this URL record URL.Status=”Processed”, URL.State=”Error” (if some error),

URL.ErrorMask=URL.ErrorMask & “Error mask” (if some error),
URL.TotalTime=URL.TotalTime+time, URL.ProcessingTime=time, URL.UDate=NOW() to proper
value.

14. Update `dc_sites`.`sites`.`Contents` + 1 for current siteId.
15. Serialize the resulted Batch object and print serialized string content to the stdout. Finish with

zero exit status value in case of no critical errors and with 1 in another case.

IOIX Ukraine, 2018

39

Db-task application
The application that acts as a main interface with DTM application to distributed DB units. The DB units

manage the local databases of all objects and items defined on local data node level. Also, this

application fetches locally stored resources. Located and acts on data node. The main SQL database

schemas defined in the dc_sites.sql and dc_sites_template.sql dump files.

This is main data storages (SQL DB, key-value DB and files) operations business logic and algorithms
application. Steps of run processing:

1. Gets the serialized object from stdin. This object it is tuple of (OPERATION_CODE,
OperationObject).

2. Qualify the object type by one of two operations groups:

 Site: (SITE_NEW,Site), (SITE_UPDATE, SiteUpdate), (SITE_STATUS, SiteStatus), (SITE_DELETE,
SiteDelete), (SITE_CLEANUP, SiteCleanup)

 URL: (URL_NEW, list(URL)), (URL_STATUS, list(URLStatus)), (URL_UPDATE, list(URLUpdate)),
(URL_DELETE, list(URLDelete)), (URL_FETCH, list(URLFetch)), (URL_CLEANUP,
list(URLCleanup)), (URL_CONTENT, list(URLContent)), (URL_PURGE, list(URLPurge)),
(URL_AGE, list(URLAge))

3. Step depends on operation code and object type. Object types and operation codes:

 SITE_NEW::Site – Insert new site operation. Steps:
i. Check is site already exists by Id, if yes – return error and move to step ix If no –

move to step ii.
ii. Insert record in to the table `dc_sites`.`sites`.

iii. Create table `dc_urls`.` urls_SITE_ID_MD5`.
iv. For each item of Site.urls insert record in to the `dc_sites`.`sites_urls` table.
v. For each item of Site.urls insert record in to the `dc_urls`.` urls_SITE_ID_MD5`

table.
vi. For each Site.filters item insert record in to the `dc_sites`.`filters` table.

vii. For each Site.properties item insert record in to the `dc_sites`.`properties` table.
viii. If ‘Content storage types: 0’ in hce-node-bundle/api/python/ini/db-task.ini then

move to ix, if ‘Content storage types: 1’ then skip ix and x, move to xi
ix. Create file of sqlite db by copy from template file:

a) CONFIG_INI_DIR/db-task_keyvalue_template.db to
CONFIG_DB_DIR/SITE_ID_MD5.db

x. Create directory CONFIG_DATA_DIR/SITE_ID_MD5
xi. Create table `dc_contents`.` contents_SITE_ID_MD5`.

xii. Create GeneralResponse object and fill error code and states if some errors.
xiii. Print serialized object to stdout.

 SITE_UPDATE::SiteUpdate – updates fields of site table and correspondent records of
related tables in the `dc_sites` database.

i. Check is site already exists by Id, if yes – return error 2020 and move to step iv,
If no – move to step ii

ii. If site property UPDATE_NOT_INSERT_ROOT_URLS exists and !=0 then delete
root URLs from dc_urls.urls_SITE_ID_MD5 and copy records from
dc_sites.sites_urls to dc_urls.urls_SITE_ID_MD5. Otherwise skip this step

IOIX Ukraine, 2018

40

iii. If field of the SiteUpdate object is not None and it is single value – then update
it with new value determinated in base json. If it is container (urls, filters,
properties) than behavior depends on the SiteUpdate.updateType field.

a) If it is UPDATE_TYPE_APPEND (updateType=0) than correspondent
Site_Id records need to be added to tables `dc_sites`.`sites_filters`, and
so on

b) If it is UPDATE_TYPE_OVERWRITE (updateType=1) than correspondent
Site_Id records need to be removed and insert new to tables
`dc_sites`.`sites_filters` and so on

c) If it is UPDATE_TYPE_UPDATE (updateType=2) then update existing
fields with a new value

iv. If SiteUpdate.state=STATE_RESTART (dc_sites`.`sites’.State = 6) than
dc_sites.sites_urls records need to be copied to the dc_urls.urls_SITE_ID_MD5
table with default fields values for not matched fields; `dc_sites`.`sites`.State
value need to be set as STATE_ACTIVE, also, fields UDate=NOW,
Iterations=Iterations+1, ErrorMask=0 and Errors=0.

v. Create GeneralResponse object and fill error code and statuses if some errors.
vi. Print serialized object to stdout.

 SITE_STATUS::SiteStatus – used to get registered Site object status. Returns the Site
object filled with values from DB tables. Steps:

i. Create new Site object.
ii. Select correspondent record from the `dc_sites`.`sites` table by

SiteStatus.siteId=`dc_sites`.`sites`.`Id` condition. If record not found, filled
Site.State=STATE_NOT_FOUND value and go to last step.

iii. Fill correspondent Site object single values fields with values from db record.
iv. Fill correspondent Site object container fields (urls, filters, properties) with

values from correspondent tables by <TABLE>.Site_Id=SiteStatus.siteId
condition.

v. Print serialized Site object to stdout.

 SITE_FIND::SiteFind – used to find registered site and return the Site object filled with
values from DB tables

i. Create new Site object
ii. Select correspondent record from the `dc_sites`.`sites` table by

SiteStatus.siteId=`dc_sites`.`sites`.`Id` condition. If record not found, return
empty itemObject

iii. Fill correspondent Site object single values fields with values from db record.
iv. Fill correspondent Site object container fields (urls, filters, properties) with

values from correspondent tables by <TABLE>
v. Create GeneralResponse object and fill error code and statuses if some errors.

vi. Print serialized object to stdout.

 SITE_DELETE::SiteDelete – used to delete registered site and remove all data from local
storages. Steps:

i. Delete correspondent record from the `dc_sites`.`sites` table by
SiteStatus.siteId=`dc_sites`.`sites`.`Id` condition.

IOIX Ukraine, 2018

41

ii. Delete correspondent records from`dc_sites`.`sites_urls`,
`dc_sites`.`sites_filters` and the `dc_sites`.`sites_properties` tables by Site_Id.

iii. Drop table `dc_urls`.` urls_SITE_ID_MD5`.
iv. Drop table `dc_urls_deleted`.urls_SITE_ID_MD5`
v. If "delayedType" in base json is not determinate – then it default value is “1”,

move to vi; if "delayedType" value is “0” then skip steps vi-ix and move to x
vi. If ‘Content storage type: 0’ in hce-node-bundle/api/python/ini/db-task.ini then

move to vi, if ‘Content storage type: 1’ then skip vi and vii; move to viii
vii. Delete file of sqlite db by name:

a) CONFIG_DB_DIR/SITE_ID_MD5.db
viii. Delete directory by name:

a) CONFIG_DATA_DIR/SITE_ID_MD5
ix. Drop table `dc_contents`.` contents_SITE_ID_MD5`
x. Create GeneralResponse object and fill error code and statuses if some errors.

xi. Print serialized object to stdout.

 SITE_CLEANUP::SiteCleanup – used to delete data of registered site from local storages.
Steps:

i. If "delayedType" in base json is not determinate – then it default value is “1”,
move to ii; if "delayedType" value is “0” then skip ii, iii and move to iv

ii. Create if not exist table `dc_urls_deleted`.urls_SITE_ID_MD5`
iii. If parameter “saveRootUrls’ in base json = 0 then copy all records from

`dc_urls.urls_SITE_ID_MD5 to `dc_urls_deleted`.urls_SITE_ID_MD5`; if
saveRootUrls’=1 then copy only non-root records from
`dc_urls.urls_SITE_ID_MD5 to `dc_urls_deleted`.urls_SITE_ID_MD5

iv. Parameter “saveRootUrls’ in base json = 1 then delete records with not empty
ParentMD5 from `dc_urls.urls_SITE_ID_MD5 (delete only non-root URLs) and
skip step v; if it is 0 then move to step vi

v. Truncate table `dc_urls`.` urls_SITE_ID_MD5`.
vi. If "delayedType" in base json is not determinate – then it default value is “1”,

move to vii; if "delayedType" value is “0” then skip vii, viii, ix and move to x
vii. If ‘Content storage type: 0’ in hce-node-bundle/api/python/ini/db-task.ini then

move to iv, if ‘Content storage type: 1’ then skip iv; move to v
viii. Delete directory CONFIG_DATA_DIR/SITE_ID_MD5 and sqlite db by name

CONFIG_INI_DIR/db-task_keyvalue_template.db
ix. Drop table `dc_contents`.` contents_SITE_ID_MD5`
x. Update correspondent `dc_sites`.`sites` record with fields: TcDate=NOW,

Resources=0, Iterations=0, State=STATE_ACTIVE, ErrorMask=0, Errors=0.
xi. If parameter “moveUrls” in base json = 1 then copy records form

`dc.sites`_`sites.url` to `dc_urls`_urls_SITE_ID_MD5; if it is 0 then skip this step
and move to viii

xii. Create GeneralResponse object and fill error code and statuses if some errors.
xiii. Print serialized object to stdout.

 URL_NEW::list(URL) – used to add list URLs to the system for sites or as not linked with
sites, or with creation of new site if not found by Id or canonized domain name. Steps:

i. Create GeneralResponse object.
ii. For each URL object from list set fields that depends from the site if has None

value (RequestDelay, HTTPTimeout, URLType):

IOIX Ukraine, 2018

42

a) If URL.siteId!=”” – select record from the `dc_sites`.`sites` table;

 If record not found then behavior process step iii and get fields
value from correspondent record;

 If record found – get fields values from this record and process
step iv.

b) If URL.siteId==”” or URL.siteId==None then process step iii.
iii. Depend on the URL.siteSelect value:

a) If SITE_SELECT_TYPE_EXPLICIT:

 If record not found or URL.siteId==”” then insert record in to the
`dc_urls`.`urls_0` table.

b) If SITE_SELECT_TYPE_AUTO:

 Qualify URL.URL (use the: scheme+netloc+”\” operation to
generate canonic url form), generate SITE_ID_MD5 from
qualified url and try to resolve site in `dc_sites`.`sites` table. If
resolved, repeat step ii.

 If site not resolved, create new site with fields values from
dc.EventObjects.Site object and insert URL to the newly created
table in `dc_urls`.`urls_SITE_ID_MD5` table. As single root URL
use the scheme+netloc+”\” canonization and initialize new Site
object with this url.

c) If SITE_SELECT_TYPE_QUALIFY_URL:

 Qualify URL.URL, generate SITE_ID_MD5 and try to resolve site
in `dc_sites`.`sites` table. If not resolved, put URL to general DB
table `dc_urls`.`urls_0`.

iv. Check is URL exists for this site and if not – insert URL in to the correspondent
urls table. If URL already exists set GeneralResponse.states item value as 2. If
some db error – set it as 1.

v. Insert item in to the GeneralResponse.states with correspondent value.
vi. Print serialized results list object to stdout.

 URL_STATUS::list(URLStatus) – used to get status of list of URLs. Steps:
i. Create results list.

ii. For each URLStatus object in the list: create new URL object, select record from
table `dc_sites`.`urls_URLStatus.siteId`, fill correspondent fields, put Site object
in to the results list. The record selected by URLStatus.url field. If the
URLStatus.urlType==URL_TYPE_MD5 the
`dc_sites`.`urls_URLStatus.siteId`.`URLMd5`=URLStatus.url condition used, else –
the `dc_sites`.`urls_URLStatus.siteId`.`URL`=URLStatus.url condition used.

iii. Insert URL object in to the list filled with correspondent field values.
iv. Print serialized results list object to stdout.

 URL_UPDATE::list(URLUpdate) – used to update list of URLs with new values. Only fields
with not None values are updated. Steps:

i. Create GeneralResponse list.
ii. For each URLUpdate objects in list using URLUpdate.url==<TABLE>.URLMD5

condition:
a) If URL.siteId==”” – update record in the `dc_urls`.`urls_0` table;
b) If URL.siteId==”” – update record in the `dc_urls`.`urls_SITE_ID_MD5`

table.

IOIX Ukraine, 2018

43

iii. Insert the GeneralResponse.statuses item with correspondent value.
iv. Print serialized object to stdout.

 URL_DELETE::list(URLDelete) – used to delete record correspondent to URL and data in
file system and key-value DB. Steps:

i. Create GeneralResponse list.
ii. For each URLDelete objects in list:

a) If URLDelete.siteId!=””

 delete record in the `dc_urls`.`urls_SITE_ID_MD5` by
URLDelete.siteId with
`dc_urls`.`urls_SITE_ID_MD5`.`URLMd5`=URLDelete.url
condition;

 Delete item in the key-value db file:
CONFIG_DB_DIR/”URLDelete.siteId”.db
by URLDelete.url key;

 Delete files in directory by mask:
CONFIG_DATA_DIR/URLDelete.siteId/PathMaker(URLDelete.url)

.getDir()/URLDelete.url*
b) If URLDelete.siteId==””

 delete record in the `dc_urls`.`urls_0` by URLDelete.siteId with
`dc_urls`.`urls_0`.`URLMd5`=URLDelete.url condition;

 delete item in the key-value db file:
CONFIG_DB_DIR/0.db

by URLDelete.url key;

 delete files in directory by mask:
CONFIG_DATA_DIR/0/PathMaker(URLDelete.url).getDir()/URLD
elete.url*

iii. Decrement `dc_sites`.`sites`.Resources and `dc_sites`.`sites`.Contents in case of
each record are deleted from `dc_urls`.`urls_SITE_ID_MD5` and from key-value
db.

iv. Insert the GeneralResponse.statuses item with correspondent value.
v. Print serialized object to stdout.

 URL_CLEANUP::list(URLCleanup) – used to update record correspondent to URL with
value State=0, Status=1 and delete raw data in file system and key-value DB. Steps:

i. Create GeneralResponse list.
ii. For each URLCleanup objects in list:

a) If URLCleanup.siteId!=””

 update fields “state” and “status” of record record in the
`dc_urls`.`urls_SITE_ID_MD5` by URLCleanup.siteId with
`dc_urls`.`urls_SITE_ID_MD5`.`URLMd5`=URLCleanup.url
condition;

 delete item in the key-value db file:
CONFIG_DB_DIR/”URLDelete.siteId”.db

by URLDelete.url key; delete files in directory by mask:

 CONFIG_DATA_DIR/URLDelete.siteId/PathMaker(URLDelete.url)
.getDir()/URLDelete.url*

IOIX Ukraine, 2018

44

b) If URLDelete.siteId==”” – update fields “state” and “status” of record in
the `dc_urls`.`urls_0` table by URLDelete.url=`dc_sites`.`sites`.`URLMD5`
condition; delete item in the key-value db file:

 CONFIG_DB_DIR/0.db
by URLDelete.url key; delete files in directory by mask:

 CONFIG_DATA_DIR/0/PathMaker(URLDelete.url).getDir()/URLD
elete.url*

iii. Insert the GeneralResponse.statuses item with correspondent value.
iv. Print serialized object to stdout.

 URL_FETCH::list(URLFetch) – used to fetch urls from correspondent tables. Steps:
i. Create results list.

ii. If URLFetch.sitesList is empty or None, select all records from the
`dc_sites`.`sites` table with condition state=”Active” and fill URLFetch.sitesList
with Id value.

iii. For each item in the URLFetch.sitesList:
a) Select records from table `dc_urls`.`urls_%URLFetch.siteId[i]% with

conditions using URLFetch.criterions items.
b) Create new URL object and fill fields’ values from selected record.
c) Insert URL object in to the results list

iv. Print serialized object to stdout.

 URL_CONTENT::list(URLContentRequest) – used to fetch resources corresponded to
URL specified. Steps:

i. Create results list object.
ii. For each URLContentRequest object in list:

a) Create new URLContentResponse object.
b) If URLContentRequest.contentTypeMask has

CONTENT_TYPE_PROCESSED bit set – return the processed content
from correspondent key-value db:

 If URLContentRequest.siteId!=”” than use db file:
CONFIG_DB_DIR/”URLContentRequest.siteId”.db

 If URLContentRequest.siteId==”” than use db file:
CONFIG_DB_DIR/0.db

and the md5(URLContentRequest.url) as key. Create new Content
object, fill fields values and insert it in to the
URLContentResponse.processedContents as item.

c) If URLContentRequest.contentTypeMask has
CONTENT_TYPE_RAW_LAST, CONTENT_TYPE_RAW_FIRST,
CONTENT_TYPE_RAW_ALL bit(s) set – return correspondent raw
content(s) from file by mask:

 If URLContentRequest.siteId!=”” than use directory:
CONFIG_DATA_DIR/URLContentRequest.siteId
/PathMaker(URLContentRequest.urlMd5).getDir()/

 If URLContentRequest.siteId==”” than use directory:
CONFIG_DATA_DIR/0/PathMaker(URLContentRequest.urlMd5))
.getDir()/

IOIX Ukraine, 2018

45

Read content of correspondent raw data file, create new Content
object, fill fields values and insert it in to the
URLContentResponse.rawContents as item.

iii. Insert URLContentResponse object in to the results list.
iv. Print serialized results list object to stdout.

4. Finish with zero exit status value in case of no critical errors and with 1 in another case.

Sites manager

The main client interface for Site and URL objects operations

IOIX Ukraine, 2018

46

Application configuration and start

Threaded classes instantiation sequence

The threaded classes use inproc server and client connections. Inproc connections need to have server-

side ready (bind and listen) to make connect operation from client side. This condition requires some

instantiation sequence for threaded classes because they make connections at this time. The

instantiation sequence:

1. AdminInterfaceServer.
2. URLManager.
3. SitesManager.
4. BatchTasksManager.
5. ClientInterfaceService.

Command line arguments

DCDaemon dc-daemon.py

 --config, -c – configuration file path name. Mandatory parameter, if application cant to load

config file it exit(1) with corresponding error message on console, no demonization, no

application functionality started. If omitted application tries to open file with the same name as

executable module and “.ini” extension in sequence:

o in the current directory,

o in the /etc/<application_binary_name>/ directory,

 --help, -h – displays brief usage information, including possible command line arguments names
and values and exit(0).

 --name, -n – application instance name. Optional parameter, if omitted the same name as
executable module file used. Overrides the same parameter in the configuration file
“Application” section.

DCClient dc-client.py

 --config, -c – the same as for the “dtmd” application.

 --help, -h – the same as for the “dtmd” application.

 --command, -cmd – task action, specifies the requested task operation, possible values
{“SITE_NEW”, “SITE_UPDATE”, “SITE_STATUS”, “SITE_DELETE”, ”SITE_CLEANUP”, “URL_NEW,
“URL_STATUS”, “URL_UPDATE”, “URL_FETCH”, “URL_DELETE”, “URL_CLEANUP”,
“URL_CONTENT”}. Optional if “--help” is specified, and mandatory – if not. A result of any action
is file in json format. Structure corresponds with DRCE Functional Object response specification.

 --file, -f – data file for action, specified by “--task” option. Mandatory if “--task” is specified. The
data file in json format, structure defined by DRCE functional object request protocol
specification.

 --fields, ff – fields set json string that will be used after target object created from pre-created
json file (--file parameter) or from regular construction as empty filled with None values all
fields. More detailed see the DC_public_client_API document.

IOIX Ukraine, 2018

47

 --merge – specifies merge or not results received from different hosts in multi-host distributed
cluster. By default if not specified by user the Boolean true or greater than zero value that is
means – merge. Boolean false or zero value – means not merge and return the array of results
from each node.

DCAdmin dc-admin.py

 --config, -c – the same as for the “dtmd” application.

 --help, -h – the same as for the “dtmd” application.

 --cmd – command name, specifies the requested admin management operation. Possible values
are {“STAT”, “SET”, “GET”, “STOP”}. “STOP” – lead to sequentially stop all threaded classes of
application in opposite start sequence (specified in the “Server” section by the
“instantiateSequence” option of configuration file) and application exit(0).

 --fields – comma separated fields list for requested operation. Mandatory, if “--cmd” is set and is
not a “STOP” or “STAT” value. For “STAT” – specifies list of statistical indicators for class handler.
If empty or not set – the empty list of fields used. For “GET” – specifies names of configuration
options for all threaded classes and application that can be changed at runtime. For “SET” –
specifies list of configuration options name:value pairs for all threaded classes and application
that can be changed at runtime. All commands returned json file content. The structure depends
on concrete request.

 --classes – comma separated list of threaded classes that will be used to execute request.
Always optional for “STOP” command (always executed for all) and mandatory for all another
commands. For “STOP” if omitted or empty – the list specified by the “instantiateSequence”
option in “Server” section of configuration file.

