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Introduction

The HCE-DC is a multipurpose high productivity scalable and
extensible engine of web data mining.

Built on several HCE project's sub-products and technologies:

The hce-node a network transport cluster application.
The Distributed Crawler (DC) service.

The Distributed Tasks Manager (DTM) service.

Web administration management console.

The tools and libraries for crawling and scraping
algorithms with REST API and bindings for a Python and
PHP development environments.

provides a flexible configuration and a deployment automation to get
Installation more closed with a target project and easy integration.




Main functional purposes

Crawling - scan web sites, analyze and parse web pages, detect
and collect URLs links and web resources. Download
resources from web-servers using automatically collected or
provided URLSs including dynamic JS rendered web-pages and
store them in a shard local raw file storage.

Processing of a web page content with several customizable
applied algorithms like a unstructured textual content scraping,
statistical data mining, NLP data mining and so on, and store
results in local SQL DB storage with distributed multi-host and
multi-process architecture model.

Tasks management of crawling, processing and data archiving as
well as internal distributed data architecture tasks like aging,
purging, statistical and so on. Tasks scheduling and balancing
using tasks management service of multi-host architecture or
real-time multi-threaded load-balancing client-server architecture.




Extensible developer’s architecture

Developer's API — full access for configuration, deployment,
monitoring and management processes and data.

Applied API — full featured multi-thread multi-host REST http-based
protocol to perform crawling and scraping batch requests.

Web administration management console — for DC and DTM
services with support of user's accounts, roles, permissions,
crawling&scraping, results collect, aggregation, archiving and
configurable custom post-processing, statistical reports, e-mail
notifications, triggering and another utility tools.

Helper tools and libraries — several support applied utilities to
convert, prepare, parse, format, data used in sequential tasks

chains as input and output objects.




Distributed asynchronous nature

The HCE-DC service engine itself is a fully distributed and parallel. It can be
deployed and configured as single- and multi-host installation. Key
features and properties of a distributed parallel architecture:

No central database or data storage for crawling and
processing. Each physical host unit with the same storage
shards portion of data but represented as atomic service.

Crawling and processing goes in parallel multi-process way on
each physical host including JS execution in a browser
environment (in case of dynamical fetcher usage) downloading,
DOM and raw text parsing, URLS collecting, fields extracting,
post-processing and so on tasks.

Customizable strategies of data sharding and requests
execution balancing with minimization of data redundancy and
optimization of system resources usage (CPU, RAM, DISK).

Resulted data merging avoiding of resources duplicates.




Flexible balancing and scalability

The HCE-DC as service can be deployed at set of physical hosts. A
number of hosts depends on their hardware productivity rate (CPU
cores number, RAM size, disk space and speed, network interface speed and so on)
and can to be scaled from one up to IPv4 C class network hosts
number (254). Key scalability principles are:

* A computational node is a physical or logical host (any kind of
virtualization and containers supported).

* Nodes can be added in to the system and gradually filled with data at
run-time. No dedicated data migration.

* Computational tasks can be configured as round-robin (RR) or
resource usage (RU) balanced. In case of RU-balancing tasks
scheduler selects node with maximum free resources using
customizable estimation formula. Different system indicators
available: CPU, RAM, DISK, 10 wait, processes number, threads
number and so on.




Scalable software and algorithms

The HCE-DC service for the Linux OS platform has three main
parts:

A core daemon module with functionality of: scheduler of crawling
and processing tasks, managers of: tasks queues, periodical
processes, computational nodes storage, real-time API requests
tasks and so on. Typically the core daemon process runs on a
dedicated physical host and represents service itself.

The computational unit modules started on a computational node in a
session-based manner to perform a batch processing including
crawling, scraping, statistical post-processing, storage SQL DB and
raw file algorithms as well as some helper utilities.

Administration management web application provides a standard
web Ul with support of projects, data collectors, notifications, stat and
another reports. It can be configured to work wits several core
daemons and switched on demand.




Open processing architecture

The computational nodes modules set can be extended with any kind of
a custom algorithms, libraries and frameworks for any development
frameworks and programming languages. The limitation is only an
API interaction translation that typically needs some adapters or
converters. Key principles are:

Data processing modules involved as native OS processes or via
API including REST and CLI.

Process instances are isolated by Linux OS.

A CLI APl is default for processes chains and data exchange or
simulated by converter utilities.

Open input/output protocol used to process interaction objects like a
batches sequential way step by step by each processing chain.

Closed data formats can be easily serialized — json, xml and so on.




General DC service architecture
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Real-time client-server architecture
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Internal DC service architecture
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Brief list of main DC service features

A fully automated distributed web crawling with: projects with more than 100 configuration
options including sets of root URLS, periodical re-crawling, HTTP and HTML redirects,
http timeouts, dynamic JS rendering, priorities, limits (size, pages, contents, errors,
URLSs, redirects, content types), requests delaying, robots.txt, rotating proxies, RSS (1,
2, RDF, Atom), scanning depth, complex filters, splitted html pages or chains, batching,
HTTP header optimizations.

A fully automated distributed web-pages processing with: News™ (pre-defined sequential
scrapers and extractors based on Goose, Newspaper and Scrapy) and Template™
(universal rules definitions to extract data from pages based on xpath and csspath,
content parts joining, merging, best result selection with metrics, regular expressions
post processing, multi-item pages split and join (product, search results, articles split
on parts, etc...), multi-rule, multi-template compositions and so on) scraping engines,
WYSIWYG templates editor, processed contents merging and so on.

A fully automated resources management: periodic operations, aging, purging, update, re-
crawling and re-processing.

A web administration console: full CRUD of projects for data collect and process with set of
parameters per project, users with roles and permissions ACL, DC and DTM service's
statistics, crawling and processing project's statistics.

A real-time API: native CLI client, asynchronous and synchronous REST requests support.
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Applied texts mining solutions

On a basis of a DC core engine architecture several applied textual
data mining solutions with implementation of several known and new
algorithms available for a target projects.

General Mining — basic statistics computation and basic text analysis of corpus of
texts like Sentences, words, characters average and frequencies, parsers, stemming,
stochastic filters, languages detection, and so on.

Classification and Entities Detection (HCE CED™) — computation, Bayesian
vocabulary-based algorithms with NLP elements. Provides a possibility to classify a
textual data content (an article, or example) on belonging to a category with basic
terms vocabulary definition and statistical threshold.

Sentiment Analysis (HCE SA™) — computation, Bayesian vocabulary-based
algorithms with NLP elements. Provides a possibility to detect a sentiment (positive,
negative or neutral) and amount of it for a textual content.

Similarity Rate (HCE SR™) — computation and grouping, Bayesian vocabulary-based
algorithms with NLP elements. Provides a possibility to calculate a rate of a similarity
between textual contents and to group similar contents.




Applied texts mining solutions

Popular Words (HCE PW™) detection most popular key phrases,

terms, entities especially for news articles based on HCE SR.

Provides a possibility to detect short (single or several words) phrases that are key sense or
main point of an article. Also, a possibility to detect lists of related by Popular Words or
Alternate articles in mass set of collected data for a period of time like a six hours or daily.

Social Networks Data Mining (NewsHub SNDM™) (Tw, Fb, G+, Li,
and so on), messages bodies and indicators (messages

numbers, likes, shares, etc...) scraping and analysis including all
described statistical algorithms techniques.

Multi-lingual engine including parsers, tokenizers, stemmers, with
support of English, Japan, Polish, Russian, Ukrainian languages
with NLP elements and synonyms support, potentially
expendable for any language in the world.




Applied technologies and tools

On a basis of a text mining solutions several applied technologies and
tools created and used for target projects.

Popular Words Time-line tool — a visual tool with possibility to get a
report with chart (area, line, bar, pie, gantt, and so on) to visualize a
time-line dynamics of changes of a pop-word frequency, number of
articles, social indicators (posts, re-posts, likes, shares, etc), pop-
words trends detection by direction of a process (rise, fall, both),
filtration of noise to show new, sparse, not periodical, periodical,
single tracks of pop-words. Reports can be used for mechanisms
seek and research in area of dynamics of popularity of descriptive
entities, acronyms, goods, trade marks, brands, persons, political
parties, news media sources analysis and so on and visual data
representation.




Applied technologies and tools

Hot topics visualization tool — a form of a representation of a pop-
words detected and collected for a period of time with filtration by
multi-level classification with HCE CED.

Modeling - Investigations of a topics probability expectation,
predictions and probability hypothesis checks related on social
networks textual data or based on them. Modeling and an
automations of statistical researches of a public echo on topic
events and relations with public media information.

NewsHub — a news and information web-site engine with

integration of any HCE's tools and solutions. WordPress-based
front-end with plug-ins and widgets oriented statistical data
representation provides a lists of news articles ranged with HCE custom
ranks like Similarity Rank, Social Networks Data Rank and Synthetic
Composite Rank; list of Similar Articles for each article, list of Alternate
Articles for each article and list of Related Articles; Sentiment Rate;
categories of articles filled with usage of HCE Classifiers.




Possible solutions

Deep mutual documents Citation and Intersection detection.
POP-words Correlation detection and probability estimations.

POP-words Trends detection including time series analysis harmonic
decomposition, Fourier transformation and synthesis, prediction and pair and
multiple linear correlation.

Custom Classifications with dynamically generated or external classifier
vocabularies including informational events detection and watchdogs tools,
filtration and screening tools, general subjects verification and detection tools
and related solutions.

Social Networks Messages Mining including a natural (number of
messages like posts, twits and so on, re-posts, shares, likes and so on) and
synthetic (sentiment rate, POP-words rate, etc) indicators computation,
periodical POP-words tracking, topics and themes relations detection and
customizable visualization tools in combination with Custom Classification —
of a specially tuned tools for social networks messages.




Possible engines and frameworks

News media aggregation and analysis informational web-site engine with
full cycle of data mining from articles harvesting to many different ways
of visualization including an articles lists - sorted and filtered with many
criteria, POP-words, personalized outputs including reports, mail
subscriptions and PDF digests.

Textual data analysis web-service tools with Ul and API in SaaS manner.

Custom configured and supported textual data collect and/or processing
service back-end engine with distributed multi-host, multi-task, multi-
process, multi-threaded, multi-node, extensible computations and
storage architecture.

Web Events Watchdog services and framework engine of common
(completely freely customizable schedule, change detection and
reaction rules and actions) and special/custom edition (e-commerce e-
shops prices watchdogs, stock or currency exchange indexes
watchdogs and so on web-sites).




Examples of graphical visualizations an
data representation views

A Popular Words time-line tool: Area chart for 7 days top 50 words dynamic
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A Popular Words time-line tool: Gantt chart for 7 days top 50 words dynamic
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A Popular Words time-line tool: Line chart for 7 days top 50 words dynamic
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A Popular Words time-line tool: Bar chart for 7 days top 50 words dynamic
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A Popular Words time-line tool: Trends chart grow & fade for 7 days top 50 words
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A Popular Words time-line tool: Area chart for 1 month a “Hurricane” pop-words
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A Popular Words time-line tool: Trends chart grow&fade for 1 month a “Hurricane”
pop-words
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A Popular Words time-line tool: Line chart for 1 month regular min 1 day dynamic
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A Popular Words time-line tool: Line chart for 1 month regular min 3 days dynamic
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A Popular Words time-line tool: Line chart for one month list of persons dynamic
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A Popular Words time-line tool: Gantt chart for one month some countries pop-words
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A Popular Words time-line tool: Line chart for one month some countries % pop-words
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A Popular Words time-line tool: Line chart for half of a year some persons and events
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A Popular Words time-line tool: Bar chart 7 days number of articles dynamic

650

600

550

500

450

400

350

300

250

200

150

100

0

Tuesday, Oct 10, 00:00

® Democratic Party: 48

NNNNN B

/I
WNN\7777.7777 I

g N .
5 g B D N ]
= 8 R 2 \
1 HE I TR Y
Bi,sf8, gNY Z (@7
HNIN AR R
1R Hil
B3 & N H R % H
Eﬁﬁ”%ﬁ E§E£§§ 8

® Actress Asia Argento (14)
@ Cleveland Indians 5-2 (20)

@ Angelina Jolie (17)
@ Corker Senate (34)

® Beverly Hills (29)

@ Democratic Party (248)
& Harvey Weinstein (283) ? Harvey Weinstein Accusers (25)
& Harvey Weinstein Enter (24) ‘@ Harvey Weinstein Hollywood (27)
% Hurricane Maria (29)
% Las Vegas Killer (22)

@ McGowan Twitter (18)

& Hurricane Nate (44) % Ivana Trump (35) & Jemele Hill (78)

& Las Vegas Shoot (45) @ Las Vegas Strip (45)

@ Melania Trump (68) < Mike Ditka (22) € New York (703)

President Carles Puigdemont (20) & Puerto Ricans (44) @ Puerto Rico (60)
© stephen Paddock (130)

© Vice President Mike (22)

@ Speaker Paul Ryan (33) © stephen Strasburg (19)

Vegas Golden (24)

© Washington Nationals (31)

Boston Red Sox (17)

& Eagle Scout (46)
& Harvey Weinstein Alleged (27)
& Harvey Weinstein Insists (30)
?
& Liddle Bob Corker (23)

@ Republican senator (26)
© Trump (617)

NN\

EEERRERE RN 77777 SSN NN\ 777777 NN 777NN\
i MR

‘e nl
BE. SSERRE
B HEEHE

@ california (58)
2 Gwyneth Paltrow (13)

@ cChief Mike Brown (30)

Harvey Weinstein Allegetions (20)
2 Hill(38) & Hollywood Hills (43)
Jerry Brown (85) Las Vegas (397)

2 Martin Truex Jr (20)

© Plaza Chicago O'Hare (22)

@ Senate GOP (32)

© Trump-tied (37) © VP Pence (51)



A Popular Words time-line tool: Line chart for 7 days top 50 Twitter posts dynamic
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-8~ New York (9697) =~ Trump (5943) -# Democratic Party (3148) Harvey Weinstein (1479) % Jemele Hill (1444) -8~ Puerto Ricans (1433)
-+~ Hill (1196) -® Hurricane Harvey (867) -« Puerto Rico (827) -* Steelers Alejandro (720) -#- Las Vegas Strip (715)
-~ Senator John McCain (595)  -# Dreamer (469) - Dallas Cowboys (465) Chemistry Prize (385)  -* Hollywood Hills (382)
-+ Jemele Hill-Donald (381) <% TMZ (348) -# Orleans Saints(345) -* Spanish (342) - EricBoll(341) -» China (336)
# Bernie Sanders (332) - Eric Paddock (317) - Early (302) Emanuel Kidega Samson (302) -+ Londoner Eluemunor (301)
=% Tillerson (301) -#- Yahoo (292) -* Korea Peninsula(285) -#- Carmelo Anthony (284) - Iran(284) -&- Republican senator (283)
~4= Trump Jr (282) =¥~ Luther Strange (276) -&- GOP senators (272) Grant Hart (270) -8 Hurricane Jose (269)  -a- ESPN (267)
- 2 America (266) @~ Colin Kaepernick (266) - Episode IX Lucasfilm (264) &~ Tampa Bay (264) - Huma Abedin (260)  =- VP Pence (257)

4~ Trump Tower (256) <~ Eagle Scout (256) Husker Du (254) <~ Rex Tillerson (250) <% - Las Vegas Killer (249)




A Popular Words time-line tool: Bar chart for 7 days top 50 Sentiment Rate dynamic
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ALDS (0) @® Academy (7)
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12:00 9. Oct 12:00 10. Oct 12:00 11. Oct

Amazon (5) @ Atlanta (2) [ ] Bay Buccaneers (10)

& Deferred Action (10) @ Detroit (0) & ESPN (-3) >

™ llinois (-2)

< Peter (1)
@ Shine (10) €© sSmith (2)
€ World Cup (0)

€ Warren (10)

2 Jenny Mollen (10)

< Prince (1) <

™ Kelly (2) 2 Kim (-5)
% Monuments-Newly Minted (10) & Neanderthal (10)
Republic (-3) River (3)

© South Dakota (-3)

Embed Share (5)

2@ Nick (-6)

© valley (-2)

< Robert (-

& Equifax (10)

™ Lady (5) % Leonard (10)

& Nobel Prize (9)
1) & Roman (10)

© Virgin Islands (10)

12:00 12. Oct 12:00

@ cape (3) @ cCity Council (3)

Eric (-2) & Fox (-1)
™ Martin (1) P Mexico (-1)
@ Ohio (-3) @ Orange (10)
r

= San Juan (0)

© walmart (10)



Web-site engine front-end: articles, pop-
words, Similarity and Sentiment ranks

wilow
e
e

BUY CENTURY PLYBOARDS;
TARGET OF RS 325:

BONANZA

Bonanza is bullish on Century Plyboards has recommended buy rating on the

stock with a target price of Rs 325 iniits r
2017.

earch report dated October 12,

KENYA BANS OPPOSITION
PROTESTS AS ELECTION
CRISIS DEEPENS

Demonstrations banned in Nairobi, Mombasa and Kisumu centres due to

sness during rallies before poll rerun

Net Sales are expected to increase by

32.3 percent Y-0-Y (down 10.6 percent
Q-0-Q) to R.s 508.2 crore, according to
ICICI Securities.

Orient Cement Q2
PAT seen up at Rs.
1.9 cr: ICICI
Securities

{EJ Moneycontrol World News @

STAT

Total news in DB: 400
Total news on page: 30
Possible news on page: 613
Similar news: 213

Number of sources: 592

President Donald Trump '

resist

hardened

request

Harvey Weinstein Saga '™

Sexual Predator

told Cara Delevingne

Killed Ronan Farrow's

Puerto Rico L

Ricans post-Hurricane Maria

forever

Trump Slams

China 56

19th Party Congress

Sina Weibo Hires

Evergrande beats HSBC

America

troops free North

penny press told

family held hostage

California

Governor Jerry Brown

wildfiro_nrano Nnrtharn




Web-site engine front-end: pop-word’s
social networks stats, article’s fragments

Iran Deal

Sentiment rank

Twitter

Articles 6

No I Date

1 2017-10-12 18:00
2 2017-10-12 1800
3 2017-10-12 18:00
4 2017-10-12 1800
5 2017-10-12 18:00
6 2017-10-12 1800
7 2017-10-12 18:00

8 2017-10-12 1800

Total
693

Media

The Atlantic

Political Wire

Common Dreams

CNBC

News24

AOL

CNN

CBN

Similarity rank

TW posts 378

TW reposts 171

TW likes 144
Fragment

...with North Korea have lessons for the Iran deal... >

...s Anger Forced Aides Into Alternative on Iran... >

Warn Against Trump Sabotage of Iran Nuclear Deal... >

...pressure to soften stance on Iran nuclear deal... >

Trump again blasts Iran nuke deal as certification... >

Trump move on the Iran deal could ruin North... >

Trump Iran deal plan risks opening... >

Trump Ready to Dump Iran Deal... >

y I o @ ®

Chains

opposed, blasts, nuke deal, twitchy, Trump's challenges, decertify, nuclear pact, Compliance, Dump, Trump,
Certify, Decertification Plan, nuke urge, Revolutionary Guards, Bombshell Report Proves, Trump Decertifies
JCPOA, perceived regional influence, Economy Recovers, warns, forced aides, announcement Friday,
Incompetently Drawn, nuke deal urge

Facebook
Total FB posts
1 4 5 6 FB reposts 619
FB likes 783
Sentiment Similarity Twitter [ posts/reposts/likes ] Facebook [ posts/reposts/likes ]

9 ue 13 0 0 n9 2 286 581
10 0 na1240

Ee
S 9“710“-000
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Web-site engine front-end: pop-words
and Similarity Ranks with images




Statistics of typical three physical hosts
Installation for one month

Projects: 8

Pages crawled: 6.2M

Crawling batches: 60K

Processing batches: 90K

Purging batches: 16K

Aging batches: 16K

Projects re-crawling: 30K

CPU Load Average: 0.45 avg / 3.5 max
CPU utilization: 3% avg | 30% max

1/0 wait time: 0.31 avg / 6.4 max
Network connections: 250 avg | 747 max
Network traffic: 152Kbps avg / 5.5Mbps max

Hosts data: 2, manage: 1

Load-balancing of system OS
resources linear managed
CPU load average, 1/0 wait
and RAM usage without
excesses and overloads.

Linear scalability of real-time
requests per physical host.

Linear scalability of automated
crawling, processing and
aging per physical host.

— — —— T — — -




Statistics of typical five physical hosts
Installation for one month

Projects total: 52, active 31

Load-balancing of system OS
resources linear managed
Pages crawled: 8M CPU load average, 1/0 wait

Crawling batches: 140K and RAM usage without
excesses and overloads.

Erocessingihalenesyi0i * Linear scalability of real-time

Purging batches: 20K requests per physical host.

Linear scalability of automated
crawling, processing and
Projects re-crawling: 30K aging per physical host.

Aging batches: 20K

CPU Load Average: 1.7 avg | 4 max

CPU utilization: 8% avg | 30% max

1/0 wait time: 1.0 avg / 12 max

Network connections: 500 avg / 2000 max
Network traffic: 4Mbps avg / 45Mbps max

Hosts data: 4, manage: 1

— —— T — — - — — —
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